
patch



patch ii

COLLABORATORS

TITLE :

patch

ACTION NAME DATE SIGNATURE

WRITTEN BY December 18, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



patch iii

Contents

1 patch 1

1.1 patch.doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 patch.m/--overview-- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 patch.m/disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 patch.m/enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 patch.m/end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 patch.m/install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 patch.m/patched_function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 patch.m/remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



patch 1 / 7

Chapter 1

patch

1.1 patch.doc

--overview--

disable()

enable()

end()

install()

patched_function()

remove()

1.2 patch.m/--overview--

PURPOSE
To allow easy patching of Amiga library and device functions
with Amiga E code.

OVERVIEW
The AmigaOS has a facility to change the code called in any of the
functions of a library or device. But due to the way Amiga E
works, it has been difficult to easily use E code as patches.

This object allows you to install patches to the system using
Amiga E code in the most flexible way, via an assembler wedge.

Installation:

You first need to open the library/device that you are going to
patch. You then need to know the Library Vector Offset of the
entry you are going to patch. This is available using the ’lvo’
tool from the Developer Kit, or any assembler include file with



patch 2 / 7

’LVO’ in the title. You must keep the library/device open for the
entire duration of the patch. If you do not, the library may be
flushed from memory and loaded somewhere else, indirectly removing
the patch and also causing a crash when we try to remove our
defunct patch later.

You create a patch object with
install()
, to install a wedge which

calls an E function which you defined like so:

PROC patch_code(function, a7,a6,a5,a4,a3,a2,a1,a0,
d7,d6,d5,d4,d3,d2,d1,d0)

You can give alternate names to the ’register’ parameters, but do
remember that they will always be passed IN THE ABOVE-STATED
ORDER, and writing the parameter’s names in a different order will
NOT cause the registers to be passed to you in a different order.

See
patched_function()
for more about this.

Your patch in operation:

This E function is called ’as’ the function you have patched, by
absolutely any task and program that could call the original
function. Also, the function may be called by more than one
program at once, so use a Semaphore or similar protection when
using global variables.

You are given all the registers as set when the patch was called -
do NOT modify them unless it is documented that the function does
this. That said, you can always modify the ’d0’ variable as it is
ignored on exit, the return value of your function is returned in
D0 rather than the stack-based copy.

Occasionally you can modify the ’scratch register’ variables d0,
d1, a0 and a1, but you must check the documentation of the
function you are patching, to ensure it does not promise to
preserve any of these registers.

The result of your function call is always returned in D0, but E’s
multiple return values (in D1 and D2) are ignored, and restored to
their original values.

Calling the original function:

You are also given a pointer to the original function you have
patched. In most patches, you will have to call the original
function sometime, so you would set up the registers appropriately
from the parameters, including A6 as the library/device base, and
call the original function. Do NOT do this by writing the E
construct "function()", as this will use an unspecified A-register
to make the call. Instead, do it yourself with another register
that you choose. If you need to pass A0 to A3 as parameters, then
you will have to preserve and use A4 or A5.



patch 3 / 7

Patch removal:

Your patch can be either enabled or disabled. When disabled, the
assembler wedge simply hops to the original function, adding
nothing to the stack. Simply exiting your program at this point
without ENDing the object would free the object instance itself
but would leave the working wedge in place, consuming 70 bytes of
memory and adding 3 instructions to the function.

Some people would advocate exiting your program with the wedge
still in place, as the user is unlikely to do that often, but when
they do there will be no problem with exiting correctly.

Others would always recommend total removal of the patch, even if
that means waiting. Unlike other wedges, the removal method used
by this object is very safe, only removes the patch if it is not
being used, and understands programs like SetFunction Manager or
SaferPatches which allow removal of patches in any order.

My advice is to always
disable()
the patch, then try to

remove()
the patch. If that fails, ask the user if you should keep ←↩

trying,
or just exit.

WARNING
When your patch is enabled, the combination of assembler wedge and
E code will add a MINIMUM of 80 bytes - THEN extra bytes are added
for the variables in your patch! There is NO stack checking made!

You should avoid local variables at all costs, use the full REG=5
optimisation, and avoid defining STRINGs or LISTs as variables.

More warnings will be pasted in here when I can find the message
about patches that I posted to the E list.

1.3 patch.m/disable

NAME
patch.disable() -- prevent further execution of the patch.

SYNOPSIS
disable()

FUNCTION
Stops the patch from being invoked again. All calls to the patched
function will be passed directly to the original function, not to
your patch.

There may, however, still be invocations of the patch running at
the time this call returns.



patch 4 / 7

SEE ALSO

enable()

1.4 patch.m/enable

NAME
patch.enable() -- allow execution of the patch.

SYNOPSIS
enable()

FUNCTION
Toggles a switch in the assembler wedge which stops it passing all
calls of the patched function to the original function, and starts
passing them to your patch.

Your patch should be ready to run at any time from the start of
the call to this method.

SEE ALSO

disable()

1.5 patch.m/end

NAME
patch.end() -- Destructor.

SYNOPSIS
end()

FUNCTION
Frees resources used by an instance of the patch class. It will
first

disable()
the patch, then it will busy loop until the patch

is successfully removed.

SEE ALSO

disable()
,
remove()
,
install()



patch 5 / 7

1.6 patch.m/install

NAME
patch.install() -- Constructor.

SYNOPSIS
install(base, offset, patchfunc)
install(base, offset, patchfunc, userdata)

FUNCTION
Initialises an instance of the patch class, and installs a patch
in the system. The patch will not be enabled to begin with, so you
must call

enable()
on the patch for it to start working. The

exception "MEM" will be raised if there is no memory for a wedge.

Read
patched_function()
to see how this patch is called.

INPUTS
base - the base of the library or device of whose function

you will be patching. It should remain open for the
entire life of the patch, otherwise it may be flushed
from memory, rendering the patch useless.

offset - This is the Library Vector Offset of the function you
are patching. The appropriate number is available from
LVO files or the ’lvo’ tool.

patchfunc - The address of the Amiga E function which will replace
the specified device/library function.

userdata - An optional parameter that can be anything you want it
to be. It will be passed to your E function as a LONG,
whether or not you define or use it. The default value
for this parameter is zero.

SEE ALSO

end()
,
enable()
,
patched_function()

1.7 patch.m/patched_function

NAME
patched_function() -- how your installed patch is called.

SYNOPSIS



patch 6 / 7

result := patched_function(
original_function,
a7,a6,a5,a4,a3,a2,a1,a0,d7,d6,d5,d4,d3,d2,d1,d0

)

result := patched_function(
userdata, original_function,
a7,a6,a5,a4,a3,a2,a1,a0,d7,d6,d5,d4,d3,d2,d1,d0

)

FUNCTION
When you install a patch, your patch function will be called
instead of the original function. Rather than your function code
being installed directly as the new patch, an assembler wedge is
instead used. This allows for the patch to be enabled and disabled
with ease, and also prepares the correct environment for an Amiga
E function to operate.

The wedge prepares a set of arguments on the stack for the patch
function, so that it can know everything neccessary to implement
the patch.

INPUTS
userdata - this value was chosen by the programmer when

installing the patch.

This userdata value is passed whether or not
it was requested in the installation, and the
way Amiga E defines function parameters allows
you to either define your function so that it
knows the userdata value, or it doesn’t (as
shown above).

The userdata value can enable you to write
only one function to patch multiple library
functions - each patch would have a different
userdata parameter, and the patch code would
use this to recognise which function it was
patching when called.

original_function - this is a pointer to the code that would
normally be executed, if your patch was not
installed. In most patches, you do not replace
the entire functionality of the patch, and
therefore have to use this pointer to call the
original function. Remember to initialise all
required parameters (including A6) before
calling this function.

a7, a6, a5, a4, - these are the 68000 registers as set before
a3, a2, a1, a0, your patch was called. Some of these will be
d7, d6, d5, d4, parameters to your patch, others will be of no
d3, d2, d1, d0 use, but you can NOT remove them from your

function declaration. You may assign names
other than their real register names to them,
perhaps to mirror the declaration of the
patched function - but be warned that you must



patch 7 / 7

NOT modify these variables, as they will be
restored to the registers on exit of your
function. The only parameter you can safely
alter is the ’d0’ parameter, as its contents
are ignored on your function exit, instead the
function’s return value is used for D0.

These parameters are always defined in the
same order - from A7 to A0, then D7 to D0.

RESULT
The value you return from your patch function is always returned
in D0 by normal E standards. The assembler wedge avoids restoring
the original value of D0 it picked up on entry, so this result
stays. Some functions declare that they return results in
registers other than D0, so you will have to store those other
results in the appropriate ’register’ parameters that were passed
in to your function. On return, those variables will be restored
into the appropriate 68000 registers.

1.8 patch.m/remove

NAME
patch.remove() -- attempt to remove the patch.

SYNOPSIS
removed := remove()

FUNCTION
Attempts to remove the patch from the system, and restore the
original function. If the patch is successfully removed, there is
nothing you can do but END the patch.

RESULT
removed - TRUE if removal of the patch was successful.

NOTE
You may have a greater chance of successful removal of the patch
if you

disable()
it first.

SEE ALSO

end()
,
disable()


	patch
	patch.doc
	patch.m/--overview--
	patch.m/disable
	patch.m/enable
	patch.m/end
	patch.m/install
	patch.m/patched_function
	patch.m/remove


